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Abstract - Automatic Speech Recognition (ASR) for 

multi-languages is currently attracting more and 

more attention; however, development is still 

hampered by the need for language experts. End-to-

End ASR simplifies their work by directly predicting 

the output character based on the acoustic input. This 

study presents the improvement of LIS-Net model for 

End-to-End Vietnamese and Chinese ASR system. In 

this study, an efficient yet accurate end-to-end 

multilingual multi-speaker ASR model has developed, 

allowing direct conversion of raw speech audio signals 

into text of multiple languages. This study proposes a 

new method of coding labels specifically for multiple 

languages by pagination labels by language. The 

results of this study are significantly improved 

compared to that of baseline models. 

I. INTRDUCTIONS 

Automatic Speech Recognition (ASR) systems that can 

transcribe speech in multiple languages, known as 

multilingual models [1]. End-to-End Automatic Speech 

Recognition for multiple languages is one of the most 

fascinating areas, which has been attracting a lot of 

attention lately. Although a data hungry, the accuracy of 

monolingual ASR model has reached par with humans on 

a number of tasks. [2],[3]. With many languages missing 

or few training resources, the results are still very limited, 

however, it is gaining a lot of interest in developing high-

performance ASR systems [4], [1]. This suggests that 

both monolingual conventional systems and monolingual 

E2E models have Word Error Rate (WER) higher than 

end-to-end multilingual model in Large-Scale 

Multilingual dataset. Moreover, a model for multiple 

languages will significantly reduce infrastructure 

compared to each model's language. The basic principles 

for building a successful multilingual model, which have 

been published today include shared hidden layers [5], 

stacked bottleneck features [5]–[8], multitask learning [9] 

and knowledge distillation [5]. 

The current development of multilingual systems for 

countries in the Asia-Pacific region has not received 

adequate attention. The accuracy is very limited because 

of the peculiarities of languages, dialects, languages of 

ethnic minorities. Lack of data, lack of model strong 

enough to increase accuracy. Therefore, in this study, the 

approach is to create models for multiple languages with 

a combination of rich and low-resourced languages. 

From there, the internal bottleneck approach extracts 

sharing features across languages that are used to cross-

train languages [6], [10], [11]. 

Some main contributions of this study as follows: 

 Improved the single model for monosyllabic and 

multi-tone in multi-languages. 

 Auto language identification in the model that 

does not need to use multiple models for the 

task of language identification and content 

recognition. 

 Language expandable, with the new label 

coding method, the model can add other 

languages to the model. 

 Expert grammar knowledge free, with end-to-

end model training, it is not necessary to 

understand grammar rules. 

II. RELATED WORK 

Multi-language speech recognition has been 

developed for a long time [12]–[14]. However, in recent 

years, it has become a phenomenon with outstanding 

development in application, so there are many directions 

for strong development of investment, such as: 

• Large-scale multilingual ASR ([1], [15]) 

• Low-resource ASR ([16]–[18]) 

• Multi-model or Multi-Task for multi-language 

ASR ([19]–[21]) 

• Code-Switching multilingual ASR ([22]–[27]) 

Many previous models have many limitations when 

working with Multilingual ASR ([28]–[31]). Some 

phrase recognition on multilingual keyword spotting 

([32], [33]) for multilingual is also studied.  Studies on 

Acoustic Models (AMs), some models have focused on 

the study of common phone sets ([28], [29]), some others 

have designed models with share parameters ([12],[9]). A 

design noteworthy in models is that some of the lower 

layers of the Deep Neural Network (DNN) are shared 

between languages and the output layer is language-

specific ([12], [31], [34]). Traditional models often 

require language-specific Pronunciation Models (PMs) 

and Language Models (LMs). Therefore, while inference 

must know speech language identity ([31]). In addition, 

AMs, PMs and LMs are usually optimized independently 

so errors can occur during training that are difficult to 

control [35]. 

Recently, a lot of research has focused on 

developing single end-to-end models for multilingual. 

These models have many advantages such as replacing 

AMs, PMs, and LMs of n different languages with a 

single model while continuing to show improved 

performance over monolingual E2E systems ([4], [35], 

[36]). 

III. BLOCK-BASED RESIDUAL NEURAL NETWORK (BRN) 

A. Language Coding and Identity 
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For coding, each language will be using word-based. 

Theoretically, the number of languages that can be coded 

is arbitrary. To improve the ability to compare results, 

this study was conducted in two languages, Chinese and 

Vietnamese. In Chinese, because the language does not 

use the alphabet, each character is considered a word, a 

meaningful word can be composed of several words put 

together, and when compounding words, there can be 

variations in pronunciation. From there we have two 

ways to encode, one is coding by each character and the 

second is coding by each meaningful phrase. To 

minimize the number of vocabulary words, this study 

chose word encoding, with Chinese being a single 

character. Here, all characters in the database are 

encoded: 

                
 (1) 

Where   refers to a language,    
 refers to the total 

vocabulary of that language (shown as Table 1). Similar 

to Vietnamese, the feature of this language is the use of 

alphabet system and extended characters in Unicode 

encoding to character encoding, word structure consists 

of several letters and accented markings for tones. Each 

word may not have a complete meaning yet. To make 

sense of what people want to say, some words still need 

to be put together. Thus, each character in Chinese will 

be corresponding to the word in Vietnamese. For 

simplicity of coding, this study chose word coding. From 

there the Vietnamese data will be coded as formula (1), 

but located in another page (using new   for each 

language). Word-based is selected because it was proven 

that it can balance both OOV and performance issues 

([37][38]) 

Table 1. Languages label coding 

Page 0 Page 1 ... Page n 

W0 W1 … Wn0 W0 W1 … Wn1 … W0 W1 … Wnn 

 

B. Imbalanced Multilingual Data Processing 

This section is described research methods for 

balancing data in a multilingual model. Data imbalance is 

a common phenomenon of speakers in languages around 

the world. Languages with more speakers will tend to 

have more data. In ASR systems, an E2E multilingual 

model will be trained on all components, therefore, the 

data imbalance is very sensitive. In this section, data 

balancing is explored, data sampling - ratio pickup 

method. 

Data imbalance often results in a model working 

better in languages with more data. Suppose we have a 

multilingual model trained with   languages          , 

where    has    training samples and   ∑   
 
   . 

Training models are performed for each batch sampled 

from N samples in the dataset. In each batch, the ratio 

between languages will be chosen equal to the ratio of 

the total number of samples between those languages in 

which    has ratio of      
  

 
. his means the model is 

updated by      times with    and      times with      

language. The rate of updating the gradient of    

compared to    is 
  

  
. 

C. Baseline Models 

BRN is designed based on the ideas of the cutting-

edge models, to understand the architecture of BRN, the 

theory of these baseline models will be shown below. 

ResNet - Residual Network. [39]. In Deep Neural 

Network, when increasing the number of layers, it will be 

harder to train. According to K.He in the paper "Deep 

Residual Learning for Image Recognition" [39], he found 

that adding more layers to the network would increase 

training error and harder to train to achieve high 

accuracy. Deep Residual Convolution significantly 

increases the number of layers in a network. Input data is 

processed by layers or a block then add or concatenate 

with previous layer via shortcut to produce output results. 

Gradient in ResNet can flow directly from input to output 

of convolutional layer and/or blocks. On the other hand, 

due to the base network is convolution, so calculation 

speed is faster than other structure. He has shown 

empirical evidence to show that the ResNet network is 

more easily optimized and can achieve significant 

increases in depth. In the article “Deep Residual Learning 

for Image Recognition” [39], they showed that their 

depth reached 152 layers and won the ILSVRC & COCO 

2015 Competitions, has the best results compared to only 

  

Figure 1. System Network Architecture 
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stack layer network structures. The structure of ResNet 

network as Figure 2 

 

Figure 2. Residual network block 

The output of the layers or a block of the network is 

    , If   was fitted to label then simply set the weight 

to 0, otherwise, fitting     , so we have: 

              (2) 

The advantage of this network is to keep features, to 

avoid vanilla gradient, however, due to regular gradient 

can only flow along the transmission network and can be 

flown across or combined with the features in each block 

by summation, which can degrade information before the 

end network. 

D. Block-Based Residual Neural Network (BRN) 

In the ASR pre-processing, we denote X as MFCC 

input feature,   [            ]  where   refer to 

number of samples in dataset. Each feature comes with a 

true label, so we denote   as true labels vector,   
[            ]  A label vector,              , can be 

vectorized into    [            ]  where      

         refer to each word in the vocabulary, 

  |  |, vectorized method depends on the language to 

choose character or word based. In this study, only 

keywords is focused with a given list  ,    

[        ], with   refer to number of given keywords, 

all words in labels vector will be treated as garbage      
if it is not in  , so we denote  ̂ as KWS labels vector, 

 ̂        and    ̂. Noted that    cannot be treated 

as Null, None or “blank” (in CTC procedure) because the 

position of    maybe need to observe. 

The architecture of the network is defined as shown 

in the Figure 1. Pre-processing step, denote as “Extract 

MFCC” block, creating MFCC future of utterances, 

saving to hard disk if it is not existed, which will help the 

training process faster in later step; the “Base_model” 

block refer to predict model.               is 

denoted as ResBlock
1
 module which plays the role of the 

core module of the BRN network,   refer to number of 

               . Each of core block    is constructed 

by 1D Convolution, Batch Normalization and Activation 

                                                         
1 ResBlock: ResNet block with modified structure 

layers that is calculated by the formula (3), for simplicity, 

  is omitted in the equation. 

             (3) 

where   and   refer to input and output vector of the 

layers considered.   or maybe   represents the activation 

type of Sigmoid or Tanh. To optimize the parameters, 

through practical experiments, a dropout layer is added 

after the Batch Normalization layer. The dropout 

parameters have been changed when experiments to find 

the best results. The element-wise multiplication in 

formula (4 is used in the core block   . 

      ( (           )) (4) 

Here   is the output vector of residual mapping to be 

learned with input vector  . To perform shortcut 

connection for   , calculation in (5) is used by element-

wise addition. 

          (5) 

Here the output,   , will be treated as input vector   of 

    , and      in (6) is aggregated in residual 

transformation as described as in ResNeXT. 

    (∑    ) 
(6) 

where   is extracted feature output of BRN that are 

shared from multiple layers from input to output of the 

network. This is an advantage of BRN for the purpose of 

sharing features in multilingual KWS. Characteristics 

between different languages will be similar, so sharing 

features between multiple languages will reduce the 

number of network parameters. From here, to improve 

predictive accuracy, several RNN classes will be used. 

   (       ) (7) 

Where   is the aggregated of blocks in (6).   denote as 

“Base_model” block as shown in Figure 1, using to 

predict.      are some Recurrent Neural Network 

layers, including Gated Recurrent Units (GRU), Long 

Short-Term Memory (LSTM), which can be customized 

to the appropriate number of layers. The final output,  , 

is the Probability Feature table, which will be used to 

calculate the loss with the CTC[40] function to update all 

parameters.  

IV. EXPERIMENTAL RESULTS 

A. Datasets 

THCH-30 corpus is an open Chinese speech dataset, 

released by Tsinghua University [41] with a total of 30 

hours of speech, recorded in a quiet room. This dataset 

has the characteristics as in Table 3. 

The selection of keywords is done by taking 10 

words with the largest frequency of occurrence in the 

Table 2. Statistics of VIVO database 

Dataset Speaker Male Female Utterance Duration(h) Unique Syllables 

Train 46 22 24 11660 14:55 4617 

Test 19 12 7 760 00:45 1692 

Table 3. Statistics of THCH-30 dataset 

Dataset Speaker Male Female Age Utterance Duration(hour) 

Train 30 8 22 20-50 10893 27:23 

Test 10 1 9 19-50 24 6:24 
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entire data set to do the experiments. After analyzing, ten 

keywords to train was chosen as in list KW: 

KW = ['的', '一', '有', '人', '了', '不', '为', '在', '用', '是']  

 Figure 3. Chinese Keyword list. These words can be read as 
follows: De, yi, you3, ren4, le, bu2, wei2, zai2, yong2, shi2 

VIVOS Corpus is a free Vietnamese Speech dataset 

[42]. It includes 15 hours of voice recording using for 

ASR task. Published by AILAB, a computer science 

laboratory of VNU - Hanoi University of Technology. 

This is the only one open dataset for ASR in Vietnamese. 

The characteristics describe as in Table 2. The method of 

selecting keywords is the same as on THCH-30 dataset. 

B. Model Architecture Configurations 

The hyper-parameters are optimized by Adam 

optimizer, the maximum training is about 400 epochs. 

Batch size varies according to the hardware trained on. 

To achieve the highest training speed, learning rate is 

selected from 0.001 then reduced after 5 epochs without 

improved results. Each utterance input is extracted 

MFCC with 20-channels. The length of features is 

padding equal to the longest one. In this case, the 

maximum padding is 375. To compare the effectiveness 

of the models, our model and the baseline were 

experimented with various custom changes. 

C. Results and Discussion 

To be able to compare with other models, the study 

[43] was selected as a baseline model because of their 

experimental results show that LSTM models has been 

outperformed the feed-forward DNN and performed 

better compared to cross-entropy loss trained LSTM. 

Moreover, LSTM, BiLSTM or Multi-layer RNN 

architecture has been used in many KWS tasks such as 

([44]–[50]). 

1) Compare block-based residual network with 

baseline models 

The results of this study are shown in Table 1. 

Specifically, "BRN3: _RNN_bGGL110" is the version of 

our model that delivers the best results compared to all 

base model customizations. With RNN, a carefully 

calibrated customization produces the best results, but it 

only achieves an ACC score of 80.27% for THCH-30, 

while for VIVO is 62.2%, still lower than BRN. To better 

understand the convention of each network option, the 

options are denoted as follows: 

The capacity is the number of hidden cells (with RNN) or 

block (with BRN). Symbols of models are defined as 

follows: 

 RNN: Recurrent Neural Network 

 bG: Bidirectional GRU (Gated recurrent units) 

 G: GRU (Gated Recurrent Units) 

 L: LSTM (Long Short-Term Memory) 

 BRN: Block-based Residual Convolutional 

Neural Network 

Table 1 shows the names of the models and the number 

of layers established on the network. In each layer, the 

size of each hidden layer, makes it easy to recreate the 

model. The “Total params” column tells us about the 

capacity of the network, in principle, the smaller the 

better. From this, we can observe that the BRN network 

is medium in size compared to the variants of the RNN. 

 

 Figure 4. THCH-30 Test ACC (%), higher is better 

 

 Figure 5. VIVOs Test ACC (%), higher is better 

Table 1. Differences model structures configuration 

Model Name Model Architect Capacity Total Params 

RNN_bG1 BiGRU 64 33K 

RNN_bGG11 BiGRU-GRU 64-64 70K 

RNN_bGG12 BiGRU-GRU 64-128 132K 

RNN_bGGL111 BiGRU-GRU-LSTM 64-64-64 103K 

RNN_bGGL121 BiGRU-GRU-LSTM 64-128-64 181K 

RNN_bGGL141 BiGRU-GRU-LSTM 64-256-64 411K 

RNN_bGGL181 BiGRU-GRU-LSTM 64-512-64 1165K 

BRN3:_RNN_bGGL110 BRN-BiGRU-GRU-LSTM 3-64-64-32 292K 
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From Figure 4 and Figure 5, we can observe that the 

results of BRN are higher than that of DeepRNN with the 

same RNN architecture and with the similar training time. 

For Chinese, because the dataset is about 30h, BRN 

shows superior results compared to baselines. The 

highest RNN result was 80.27% and the BRN result was 

86.84%, higher than baseline 33.3%. 

 

With Vietnamese, this dataset has nearly 15 hours, too 

few for a language, so all models are hard to give the best 

results in practice. However, to compare the BRN with 

the baseline, once again from Figure 5, the BRN 

produces a higher result, 63.54% compared to 62.2%. 

The author hopes that if the amount of data is increased, 

the models will increase accuracy. It is also a work to be 

done in the future. 

2) Discussion. 

As shown in Figure 4 and Figure 5, when using Deep 

RNNs with varying network depths and using BRN with 

the varying configurable blocks, it is easy to observe that 

BRN has better results in most cases. From there, the 

model can easily use code-switching for multiple 

languages or code-switching for multi-dialect languages. 

V. CONCLUSIONS 

In this study, we revisited the baseline models architect. 

Based on these cutting-edge structures, we have 

introduced the BRN network with design by inheriting 

those advantage design. The purpose of this network is 

improving the accuracy when detecting speech keywords 

in multiple datasets for multiple languages without 

aligned labels, in this case, the Mandarin and 

Vietnamese. This Keyword Spotting approach is suitable 

for real applications. Experiment on THCH-30 and 

ViVos corpus, both datasets are very modest in quantity. 

BRN shows that it is outperforms Deep RNNs base 

models. As future work, we want to expand this work to 

support simultaneous KWS for multi-language online 

recognition. 
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